Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Front Med (Lausanne) ; 11: 1364657, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618194

RESUMO

The global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an urgent need for effective therapeutic options. SARS-CoV-2 is a novel coronavirus responsible for the COVID-19 pandemic that has resulted in significant morbidity and mortality worldwide. The virus is known to enter host cells by binding to the angiotensin-converting enzyme 2 (ACE2) receptor, and emerging evidence suggests that heparan sulfate proteoglycans (HSPGs) play a crucial role in facilitating this process. HSPGs are abundant cell surface proteoglycan present in many tissues, including the lung, and have been shown to interact directly with the spike protein of SARS-CoV-2. This review aims to summarize the current understanding of the role of HSPGs in SARS-CoV-2 infection and the potential of developing new therapies targeting HSPGs.

2.
Sci Adv ; 10(11): eadk2542, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489364

RESUMO

Stressed cells secret misfolded proteins lacking signaling sequence via an unconventional protein secretion (UcPS) pathway, but how misfolded proteins are targeted selectively in UcPS is unclear. Here, we report that misfolded UcPS clients are subject to modification by a ubiquitin-like protein named ubiquitin-fold modifier 1 (UFM1). Using α-synuclein (α-Syn) as a UcPS model, we show that mutating the UFMylation sites in α-Syn or genetic inhibition of the UFMylation system mitigates α-Syn secretion, whereas overexpression of UFBP1, a component of the endoplasmic reticulum-associated UFMylation ligase complex, augments α-Syn secretion in mammalian cells and in model organisms. UFM1 itself is cosecreted with α-Syn, and the serum UFM1 level correlates with that of α-Syn. Because UFM1 can be directly recognized by ubiquitin specific peptidase 19 (USP19), a previously established UcPS stimulator known to associate with several chaperoning activities, UFMylation might facilitate substrate engagement by USP19, allowing stringent and regulated selection of misfolded proteins for secretion and proteotoxic stress alleviation.


Assuntos
Retículo Endoplasmático , alfa-Sinucleína , Animais , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Transporte Proteico/fisiologia , Retículo Endoplasmático/metabolismo , Mamíferos/metabolismo , Endopeptidases/metabolismo
3.
Cell Stress Chaperones ; 29(1): 21-33, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38320449

RESUMO

J-domain proteins (JDPs) are the largest family of chaperones in most organisms, but much of how they function within the network of other chaperones and protein quality control machineries is still an enigma. Here, we report on the latest findings related to JDP functions presented at a dedicated JDP workshop in Gdansk, Poland. The report does not include all (details) of what was shared and discussed at the meeting, because some of these original data have not yet been accepted for publication elsewhere or represented still preliminary observations at the time.


Assuntos
Proteínas de Choque Térmico HSP70 , Chaperonas Moleculares , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Polônia , Proteínas de Choque Térmico HSP40/metabolismo
4.
J Med Chem ; 66(22): 15084-15093, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37937963

RESUMO

Biomolecular condensates are proposed to cause diseases, such as cancer and neurodegeneration, by concentrating proteins at abnormal subcellular loci. Imaging-based compound screens have been used to identify small molecules that reverse or promote biomolecular condensates. However, limitations of conventional imaging-based methods restrict the screening scale. Here, we used a graph convolutional network (GCN)-based computational approach and identified small molecule candidates that reduce the nuclear liquid-liquid phase separation of TAR DNA-binding protein 43 (TDP-43), an essential protein that undergoes phase transition in neurodegenerative diseases. We demonstrated that the GCN-based deep learning algorithm is suitable for spatial information extraction from the molecular graph. Thus, this is a promising method to identify small molecule candidates with novel scaffolds. Furthermore, we validated that these candidates do not affect the normal splicing function of TDP-43. Taken together, a combination of an imaging-based screen and a GCN-based deep learning method dramatically improves the speed and accuracy of the compound screen for biomolecular condensates.


Assuntos
Condensados Biomoleculares , Aprendizado Profundo , Algoritmos , Proteínas de Ligação a DNA , Diagnóstico por Imagem
5.
NPJ Parkinsons Dis ; 9(1): 157, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017009

RESUMO

The USP19 deubiquitinase is found in a locus associated with Parkinson's Disease (PD), interacts with chaperonins, and promotes secretion of α-synuclein (α-syn) through the misfolding-associated protein secretion (MAPS) pathway. Since these processes might modulate the processing of α-syn aggregates in PD, we inactivated USP19 (KO) in mice expressing the A53T mutation of α-syn and in whom α-syn preformed fibrils (PFF) had been injected in the striatum. Compared to WT, KO brains showed decreased accumulation of phospho-synuclein (pSyn) positive aggregates. This improvement was associated with less activation of microglia and improved performance in a tail-suspension test. Exposure of primary neurons from WT and KO mice to PFF in vitro also led to decreased accumulation of pSyn aggregates. KO did not affect uptake of PFF nor propagation of aggregates in the cultured neurons. We conclude that USP19 instead modulates intracellular dynamics of aggregates. At an early time following PFF injection when the number of pSyn-positive neurons were similar in WT and KO brains, the KO neurons contained less aggregates. KO brain aggregates stained more intensely with anti-ubiquitin antibodies. Immunoprecipitation of soluble proteins from WT and KO brains with antibodies to pSyn showed higher levels of ubiquitinated oligomeric species in the KO samples. We propose that the improved pathology in USP19 KO brains may arise from decreased formation or enhanced clearance of the more ubiquitinated aggregates and/or enhanced disassembly towards more soluble oligomeric species. USP19 inhibition may represent a novel therapeutic approach that targets the intracellular dynamics of α-syn complexes.

6.
Res Sq ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37674732

RESUMO

Background Microtubule-binding protein tau is a misfolding-prone protein associated with tauopathies. As tau undergoes cell-to-cell transmission, extracellular tau aggregates convert astrocytes into a pro-inflammatory state via integrin activation, causing them to release unknown neurotoxic factors. Results Here, we combine transcriptomics with isotope labeling-based quantitative mass spectrometry analysis of mouse primary astrocyte secretome to establish PI3K-AKT as a critical differentiator between pathogenic and physiological integrin activation; simultaneous activation of PI3K-AKT and focal adhesion kinase (FAK) in tau fibril-treated astrocytes changes the output of integrin signaling, causing pro-inflammatory gene upregulation, trans-Golgi network restructuring, and altered secretory flow. Furthermore, NCAM1, as a proximal signaling component in tau-stimulated integrin and PI3K-AKT activation, facilitates the secretion of complement C3 as a main neurotoxic factor. Significantly, tau fibrils-associated astrogliosis and C3 secretion can be mitigated by FAK or PI3K inhibitors. Conclusions These findings reveal an unexpected function for PI3K-AKT in tauopathy-associated reactive astrogliosis, which may be a promising target for anti-inflammation-based Alzheimer's therapy.

7.
Nat Commun ; 14(1): 5777, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723160

RESUMO

SARS-CoV-2 infection causes spike-dependent fusion of infected cells with ACE2 positive neighboring cells, generating multi-nuclear syncytia that are often associated with severe COVID. To better elucidate the mechanism of spike-induced syncytium formation, we combine chemical genetics with 4D confocal imaging to establish the cell surface heparan sulfate (HS) as a critical stimulator for spike-induced cell-cell fusion. We show that HS binds spike and promotes spike-induced ACE2 clustering, forming synapse-like cell-cell contacts that facilitate fusion pore formation between ACE2-expresing and spike-transfected human cells. Chemical or genetic inhibition of HS mitigates ACE2 clustering, and thus, syncytium formation, whereas in a cell-free system comprising purified HS and lipid-anchored ACE2, HS stimulates ACE2 clustering directly in the presence of spike. Furthermore, HS-stimulated syncytium formation and receptor clustering require a conserved ACE2 linker distal from the spike-binding site. Importantly, the cell fusion-boosting function of HS can be targeted by an investigational HS-binding drug, which reduces syncytium formation in vitro and viral infection in mice. Thus, HS, as a host factor exploited by SARS-CoV-2 to facilitate receptor clustering and a stimulator of infection-associated syncytium formation, may be a promising therapeutic target for severe COVID.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , Enzima de Conversão de Angiotensina 2/genética , Drogas em Investigação , Células Gigantes , Heparitina Sulfato
8.
Cell Biosci ; 13(1): 179, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37759245

RESUMO

BACKGROUND: Microtubule-binding protein tau is a misfolding-prone protein associated with tauopathies. As tau undergoes cell-to-cell transmission, extracellular tau aggregates convert astrocytes into a pro-inflammatory state via integrin activation, causing them to release unknown neurotoxic factors. RESULTS: Here, we combine transcriptomics with isotope labeling-based quantitative mass spectrometry analysis of mouse primary astrocyte secretome to establish PI3K-AKT as a critical differentiator between pathogenic and physiological integrin activation; simultaneous activation of PI3K-AKT and focal adhesion kinase (FAK) in tau fibril-treated astrocytes changes the output of integrin signaling, causing pro-inflammatory gene upregulation, trans-Golgi network restructuring, and altered secretory flow. Furthermore, NCAM1, as a proximal signaling component in tau-stimulated integrin and PI3K-AKT activation, facilitates the secretion of complement C3 as a main neurotoxic factor. Significantly, tau fibrils-associated astrogliosis and C3 secretion can be mitigated by FAK or PI3K inhibitors. CONCLUSIONS: These findings reveal an unexpected function for PI3K-AKT in tauopathy-associated reactive astrogliosis, which may be a promising target for anti-inflammation-based Alzheimer's therapy.

9.
Nat Commun ; 14(1): 4798, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558718

RESUMO

UBA1 is the primary E1 ubiquitin-activating enzyme responsible for generation of activated ubiquitin required for ubiquitination, a process that regulates stability and function of numerous proteins. Decreased or insufficient ubiquitination can cause or drive aging and many diseases. Therefore, a small-molecule enhancing UBA1 activity could have broad therapeutic potential. Here we report that auranofin, a drug approved for the treatment of rheumatoid arthritis, is a potent UBA1 activity enhancer. Auranofin binds to the UBA1's ubiquitin fold domain and conjugates to Cys1039 residue. The binding enhances UBA1 interactions with at least 20 different E2 ubiquitin-conjugating enzymes, facilitating ubiquitin charging to E2 and increasing the activities of seven representative E3s in vitro. Auranofin promotes ubiquitination and degradation of misfolded ER proteins during ER-associated degradation in cells at low nanomolar concentrations. It also facilitates outer mitochondrial membrane-associated degradation. These findings suggest that auranofin can serve as a much-needed tool for UBA1 research and therapeutic exploration.


Assuntos
Enzimas de Conjugação de Ubiquitina , Ubiquitina , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Auranofina/farmacologia , Ubiquitinação , Enzimas Ativadoras de Ubiquitina/metabolismo
10.
bioRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398461

RESUMO

Selective breakdown of proteins and aggregates is crucial for maintaining normal cellular activities and is involved in the pathogenesis of diverse diseases. How the cell recognizes and tags these targets in different structural states for degradation by the proteasome and autophagy pathways has not been well understood. Here, we discovered that a HECT-family ubiquitin ligase HUWE1 is broadly required for the efficient degradation of soluble factors and for the clearance of protein aggregates/condensates. Underlying this capacity of HUWE1 is a novel Ubiquitin-Directed ubiquitin Ligase (UDL) activity which recognizes both soluble substrates and aggregates that carry a high density of ubiquitin chains and rapidly expand the ubiquitin modifications on these targets. Ubiquitin signal amplification by HUWE1 recruits the ubiquitin-dependent segregase p97/VCP to process these targets for subsequent degradation or clearance. HUWE1 controls the cytotoxicity of protein aggregates, mediates Targeted Protein Degradation and regulates cell-cycle transitions with its UDL activity.

11.
Res Sq ; 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37034606

RESUMO

The mechanism of syncytium formation, caused by spike-induced cell-cell fusion in severe COVID-19, is largely unclear. Here we combine chemical genetics with 4D confocal imaging to establish the cell surface heparan sulfate (HS) as a critical host factor exploited by SARS-CoV-2 to enhance spike’s fusogenic activity. HS binds spike to facilitate ACE2 clustering, generating synapse-like cell-cell contacts to promote fusion pore formation. ACE2 clustering, and thus, syncytium formation is significantly mitigated by chemical or genetic elimination of cell surface HS, while in a cell-free system consisting of purified HS, spike, and lipid-anchored ACE2, HS directly induces ACE2 clustering. Importantly, the interaction of HS with spike allosterically enables a conserved ACE2 linker in receptor clustering, which concentrates spike at the fusion site to overcome fusion-associated activity loss. This fusion-boosting mechanism can be effectively targeted by an investigational HS-binding drug, which reduces syncytium formation in vitro and viral infection in mice.

12.
Cell Rep ; 42(1): 112028, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36848233

RESUMO

Translocon clogging at the endoplasmic reticulum (ER) as a result of translation stalling triggers ribosome UFMylation, activating translocation-associated quality control (TAQC) to degrade clogged substrates. How cells sense ribosome UFMylation to initiate TAQC is unclear. We conduct a genome-wide CRISPR-Cas9 screen to identify an uncharacterized membrane protein named SAYSD1 that facilitates TAQC. SAYSD1 associates with the Sec61 translocon and also recognizes both ribosome and UFM1 directly, engaging a stalled nascent chain to ensure its transport via the TRAPP complex to lysosomes for degradation. Like UFM1 deficiency, SAYSD1 depletion causes the accumulation of translocation-stalled proteins at the ER and triggers ER stress. Importantly, disrupting UFM1- and SAYSD1-dependent TAQC in Drosophila leads to intracellular accumulation of translocation-stalled collagens, defective collagen deposition, abnormal basement membranes, and reduced stress tolerance. Thus, SAYSD1 acts as a UFM1 sensor that collaborates with ribosome UFMylation at the site of clogged translocon, safeguarding ER homeostasis during animal development.


Assuntos
Proteínas de Drosophila , Retículo Endoplasmático , Ribossomos , Animais , Membrana Basal , Drosophila , Fenbendazol , Proteínas de Membrana , Transporte Proteico , Proteínas de Drosophila/metabolismo
13.
Autophagy ; 19(1): 204-223, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35506243

RESUMO

Mutations in DNAJC5/CSPα are associated with adult neuronal ceroid lipofuscinosis (ANCL), a dominant-inherited neurodegenerative disease featuring lysosome-derived autofluorescent storage materials (AFSMs) termed lipofuscin. Functionally, DNAJC5 has been implicated in chaperoning synaptic proteins and in misfolding-associated protein secretion (MAPS), but how DNAJC5 dysfunction causes lipofuscinosis and neurodegeneration is unclear. Here we report two functionally distinct but coupled chaperoning activities of DNAJC5, which jointly regulate lysosomal homeostasis: While endolysosome-associated DNAJC5 promotes ESCRT-dependent microautophagy, a fraction of perinuclear and non-lysosomal DNAJC5 mediates MAPS. Functional proteomics identifies a previously unknown DNAJC5 interactor SLC3A2/CD98hc that is essential for the perinuclear DNAJC5 localization and MAPS but dispensable for microautophagy. Importantly, uncoupling these two processes, as seen in cells lacking SLC3A2 or expressing ANCL-associated DNAJC5 mutants, generates DNAJC5-containing AFSMs resembling NCL patient-derived lipofuscin and induces neurodegeneration in a Drosophila ANCL model. These findings suggest that MAPS safeguards microautophagy to avoid DNAJC5-associated lipofuscinosis and neurodegeneration.Abbreviations: 3-MA: 3-methyladenine; ACTB: actin beta; AFSM: autofluorescent storage materials; ANCL: adult neuronal ceroid lipofuscinosis; Baf. A1: bafilomycin A1; CLN: ceroid lipofuscinosis neuronal; CLU: clusterin; CS: cysteine string domain of DNAJC5/CSPα; CUPS: compartment for unconventional protein secretion; DN: dominant negative; DNAJC5/CSPα: DnaJ heat shock protein family (Hsp40) member C5; eMI: endosomal microautophagy; ESCRT: endosomal sorting complex required for transport; GFP: green fluorescent protein; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; INCL: infant neuronal ceroid lipofuscinosis; JNCL: juvenile neuronal ceroid lipofuscinosis; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LAPTM4B: lysosomal protein transmembrane 4 beta; LN: linker domain of DNAJC5/CSPα; MAPS: misfolding-associated protein secretion; mCh/Ch: mCherry; mCi/Ci: mCitrine; MTOR: mechanistic target of rapamycin kinase; NCL: neuronal ceroid lipofuscinosis; PPT1: palmitoyl-protein thioesterase 1; PQC: protein quality control; SBP: streptavidin binding protein; SGT: small glutamine-rich tetratricopeptide repeat; shRNA: short hairpin RNA; SLC3A2/CD98hc: solute carrier family 3 member 2; SNCA/α-synuclein: synuclein alpha; TMED10: transmembrane p24 trafficking protein 10; UV: ultraviolet; VPS4: vacuolar protein sorting 4 homolog; WT: wild type.


Assuntos
Proteínas de Choque Térmico HSP40 , Proteínas de Membrana , Lipofuscinoses Ceroides Neuronais , Humanos , Autofagia/genética , Complexos Endossomais de Distribuição Requeridos para Transporte , Lipofuscina , Proteínas de Membrana/genética , Mutação , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Proteínas de Choque Térmico HSP40/genética
14.
Cell Rep ; 40(6): 111175, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35947953

RESUMO

Protein degradation is fundamentally important to ensure cell homeostasis. In the endoplasmic reticulum (ER), the ER-associated degradation (ERAD) pathway targets incorrectly folded and unassembled proteins for turnover by the cytoplasmic proteasome. Previously, we showed that the rhomboid protease RHBDL4, together with p97, mediates membrane protein degradation. However, whether RHBDL4 acts in concert with additional ERAD components is unclear, and its full substrate spectrum remains to be defined. Here, we show that, in addition to membrane proteins, RHBDL4 cleaves aggregation-prone luminal ERAD substrates. Since mutations of the RHBDL4 rhomboid domain led to stabilization of substrates at the cytoplasmic side, we hypothesize that, analogous to the homolog ERAD factor derlin, RHBDL4 is directly involved in substrate retrotranslocation. RHBDL4's interaction with the erlin ERAD complex and reciprocal interaction of rhomboid substrates with erlins suggest that RHBDL4 and erlins form a complex that clips substrates and thereby rescues aggregation-prone peptides in the ER from aggregation.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático , Endopeptidases/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise
15.
Cell Biosci ; 12(1): 101, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790999

RESUMO

The National Institutes of Health's Asian American, Native Hawaiian and Pacific Islander Health Scientific Interest Group (NIH AANHPI-HSIG) provides a viewpoint on developing approaches to enhance research on health and wellbeing for Asian American, Native Hawaiian, and Pacific Islander ethnic populations, in order to advance racial equity amongst such populations.

16.
Methods Mol Biol ; 2473: 349-366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35819775

RESUMO

Protein misfolding poses a significant threat to the fitness of eukaryotic cells, particularly for neurons facing environmental stress. To effectively triage and remove defective and unwanted proteins, cells have evolved diverse protein quality control (PQC) mechanisms relying on proteasome- and endolysosome-mediated degradation systems. Defects in PQC functions are linked to various human diseases including many aging-associated neurodegenerative diseases. Misfolding-associated protein secretion (MAPS) is a recently reported PQC mechanism that eliminates misfolded cytosolic proteins by an unconventional secretory pathway using an endo-vesiclular network. This process implicates DNAJC5, a chaperone that escorts misfolded cargos to intracellular vesicles to facilitate their secretion. Cargos of DNAJC5 include Parkinson's and Alzheimer's disease-associated proteins known to undergo cell-to-cell transmission during disease progression. Thus, elucidating how these proteins are secreted may reveal novel therapeutic targets for these diseases. Here we describe a collection of methods used to detect either the basal or induced secretion of misfolded proteins from cell lines and cultured primary neurons.


Assuntos
Chaperonas Moleculares , Dobramento de Proteína , Linhagem Celular , Humanos , Lisossomos/metabolismo , Chaperonas Moleculares/metabolismo , Neurônios/metabolismo
17.
Front Cell Dev Biol ; 10: 906453, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620055

RESUMO

Neuronal ceroid lipofuscinosis (NCL) is a collection of genetically inherited neurological disorders characterized by vision loss, seizure, brain death, and premature lethality. At the cellular level, a key pathologic hallmark of NCL is the build-up of autofluorescent storage materials (AFSM) in lysosomes of both neurons and non-neuronal cells. Molecular dissection of the genetic lesions underlying NCLs has shed significant insights into how disruption of lysosomal homeostasis may lead to lipofuscin accumulation and NCLs. Intriguingly, recent studies on DNAJC5/CSPα, a membrane associated HSC70 co-chaperone, have unexpectedly linked lipofuscin accumulation to two intimately coupled protein quality control processes at endolysosomes. This review discusses how deregulation of unconventional protein secretion and endosomal microautophagy (eMI) contributes to lipofuscin accumulation and neurodegeneration.

18.
J Chem Inf Model ; 62(8): 1988-1997, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35404596

RESUMO

The cell entry of SARS-CoV-2 has emerged as an attractive drug development target. We previously reported that the entry of SARS-CoV-2 depends on the cell surface heparan sulfate proteoglycan (HSPG) and the cortex actin, which can be targeted by therapeutic agents identified by conventional drug repurposing screens. However, this drug identification strategy requires laborious library screening, which is time consuming, and often limited number of compounds can be screened. As an alternative approach, we developed and trained a graph convolutional network (GCN)-based classification model using information extracted from experimentally identified HSPG and actin inhibitors. This method allowed us to virtually screen 170,000 compounds, resulting in ∼2000 potential hits. A hit confirmation assay with the uptake of a fluorescently labeled HSPG cargo further shortlisted 256 active compounds. Among them, 16 compounds had modest to strong inhibitory activities against the entry of SARS-CoV-2 pseudotyped particles into Vero E6 cells. These results establish a GCN-based virtual screen workflow for rapid identification of new small molecule inhibitors against validated drug targets.


Assuntos
Antivirais , SARS-CoV-2 , Internalização do Vírus , Actinas , Antivirais/química , Proteoglicanas de Heparan Sulfato , Humanos , SARS-CoV-2/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
19.
Sci Rep ; 12(1): 6294, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35440680

RESUMO

Spike-mediated entry of SARS-CoV-2 into human airway epithelial cells is an attractive therapeutic target for COVID-19. In addition to protein receptors, the SARS-CoV-2 spike (S) protein also interacts with heparan sulfate, a negatively charged glycosaminoglycan (GAG) attached to certain membrane proteins on the cell surface. This interaction facilitates the engagement of spike with a downstream receptor to promote viral entry. Here, we show that Mitoxantrone, an FDA-approved topoisomerase inhibitor, targets a heparan sulfate-spike complex to compromise the fusogenic function of spike in viral entry. As a single agent, Mitoxantrone inhibits the infection of an authentic SARS-CoV-2 strain in a cell-based model and in human lung EpiAirway 3D tissues. Gene expression profiling supports the plasma membrane as a major target of Mitoxantrone but also underscores an undesired activity targeting nucleosome dynamics. We propose that Mitoxantrone analogs bearing similar heparan sulfate-binding activities but with reduced affinity for DNA topoisomerases may offer an alternative therapy to overcome breakthrough infections in the post-vaccine era.


Assuntos
Tratamento Farmacológico da COVID-19 , Glicoproteína da Espícula de Coronavírus , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Mitoxantrona/farmacologia , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
20.
Life (Basel) ; 11(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34575087

RESUMO

Neurodegenerative diseases are aging-associated chronic pathological conditions affecting primarily neurons in humans. Inclusion bodies containing misfolded proteins have emerged as a common pathologic feature for these diseases. In many cases, misfolded proteins produced by a neuron can be transmitted to another neuron or a non-neuronal cell, leading to the propagation of disease-associated pathology. While undergoing intercellular transmission, misfolded proteins released from donor cells can often change the physiological state of recipient cells. Accumulating evidence suggests that astrocytes are highly sensitive to neuron-originated proteotoxic insults, which convert them into an active inflammatory state. Conversely, activated astrocytes can release a plethora of factors to impact neuronal functions. This review summarizes our current understanding of the complex molecular interplays between astrocyte and neuron, emphasizing on Tau and α-synuclein (α-syn), the disease-driving proteins for Alzheimer's and Parkinson's diseases, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...